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I. Problem

Predict whether there is rainfall at a location based on (processed) infrared satellite image infor-
mation. The dataset is courtesy of UC Irvine’s Center for Hydrometeorology and Remote Sensing,
including Dr. Soroosh Sorooshian, Dr. Xiaogang Gao, Dr. Kuo-lin Hsu, Dan Braithwaite, Yumeng
Tau, and Negar Karbalee.

II. Understanding the data

Initially, we wrote several helper functions to understand the dataset better and speed up our
process. These included functions for printing the summary statistics of the data, visualizing the
relationship between features and the target and other features, performing sequential data sam-
pling, balanced sampling and plotting errors as a function of different parameters.

Figure 1: Feature-target distribution (post scaling)

We observed that the data corresponding to features 6, 7, 13, 14 had a very large number of zeros
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in the data distribution. Figure 1 shows the distribution of values for features 6 and 7. This can
be compared with Feature 1 which has a lesser proportion of zeros in its distribution.

The target label Y is distributed as follows:

• Number of rows with Y = 0 is 1,26,551

• Number of rows with Y = 1 is 73,449

We noticed that the data is slightly imbalanced – the number of data points with Y = 0 is 72%
more than the data points with Y = 1

• The imbalance may just be a natural characteristic of the domain from where the dataset was
obtained. So, we should be careful in correcting for this imbalance and not end up “tricking”
the learner to believe that there is an equal probability for 0s or 1s in the world from which
this data was obtained. Also, given the size of the dataset, this imbalance might not be a
huge issue.

• Having said that, we should not completely ignore it either. We hence inferred that we should
handle it by weighting the class Y = 1 by around 1 to 1.5 times the weight of class Y = 0
in the learners we build (wherever necessary). We also built models by under-sampling data
points with Y = 0, but these underperformed on the validation data.

By plotting stacked bar plots to understand the distribution of values and targets in each feature,
pair plots to infer the relationship of features with themselves and scatter plots to understand their
relationship with the target, we observed a few more things:

• Target labels were more or less uniformly distributed with respect to each feature

• Certain features had a disproportionately high number of zeros

• Creating new features by combining existing features might not be very helpful in increasing
the separability of the classes

Our findings from this phase primarily aided in the feature transformation and selection process
during model building.

In the next section, we briefly describe our model building methodology.

III. Methodology

At a high level, our approach for the model building exercise involved four phases. We discuss the
finer details of each phase in subsequent sections:

• Phase 1: Quick prototyping of different models on subsets of data (using Weka)

• Phase 2: Elaborate model building on a subset of models (chosen from Phase 1 based on their
performance). This phase primarily involves feature transformation, data sampling, feature
sampling, parameter tuning and model refinement, some of which was dictated through our
Data Understanding phase and some of which was decided based on error visualization and
detecting under/overfitting (using scikit-learn and mltools)

• Phase 3: Model building on the entire set of data (using GraphLab, for efficiency purposes)

• Phase 4: Building an ensemble learner based on the model predictions from Phase 3

We now summarize the various experiments we performed and the results obtained from them.
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IV. Experiments and Results

Phase 1 (using Weka)

We built Näıve Bayes, Decision Trees, Random Forests, Logistic Regression and Sequential Minimal
Optimization models on subsets of the dataset

• Näıve Bayes was omitted from future analysis due to its relatively poor performance

We computed the Information Gain of the features, which guided us in performing feature selection
for certain learners

• Features in decreasing order of Information Gain:

1, 14, 9, 3, 13, 4, 10, 2, 12, 6, 11, 7, 8, 5

Phase 2 (using scikit-learn and mltools)

We built models for SVM, Logistic Regression, Decision Trees and Random Forests using the mltools
and scikit-learn libraries (mainly for more powerful parameter tuning). The results are summarized
in Figure 2. Some of the common steps we followed for all the models are listed below:

• Experimented with feature selection based on their information gain and certain feature trans-
formations based on visualizing the relationship between features and the target.

– We experimented with various feature transformations, namely exponential, log, sine,
and polynomial transforms of individual features and visualized their relationship with
Y. This also included building models with additional features such as (X7*X7 to weight
non-zero values in X7), (X2-X3 to see if the difference of the distributed non-zero values in
both improved the separability of the data). There were a few transforms that improved
the performance of models minutely, but we felt the additional performance boost did not
justify the increased model complexity introduced by including the transformed features
and hence worked with the existing feature set.

• Different models were compared based on their performance on training and validation data
(error rates, ROC and AUC) and in a few cases, using their Kaggle scores

SVM:

• Initially, we built an SVM model using a rbf kernel on a subset of the data. But due to the
size of the data and consequently, the slow running time, which would be further detrimental
when building on the entire 200k data, we decided to switch to linear SVM

• Class weights for Y = 1 (with respect to Y = 0) were varied in the range [1, 1.5]. The
model with weight = 1.4 performed best. Lowering or increasing the weights led to severe
under-performance on both the training and validation data

• We also performed clustering on the entire data set using k-means and EM algorithms (with
k = 2 initially, to reflect the number of classes in the target, but later increased up to k =
5) and included the cluster assignments as a feature to the SVM model. Again, this gave
an insignificant improvement and we did not find the feature valuable enough to include in
further analysis

Logistic Regression

• Logistic regression typically works pretty well even if the data is imbalanced

• The bare-bones version of it tended to overfit the data and also predict the majority class
0 predominantly. So, we decided to perform L2 regularization and increased the L2 penalty
parameter. This improved the model performance by a good margin
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Figure 2: Results from Phase 2 (Dataset size: Training = 20,000; Validation = 10,000)

Decision Trees

• Using training/validation data splits and cross validation, we compared different decision trees
(including a simple decision stump) by changing the split criterion (gain/entropy).

• On observing increased error rates in the validation data (signs of overfitting), we tried to
control the model complexity by varying min samples split, min samples leaf and max depth

• We decided to build a boosted version of the decision tree and check for further improvement
in model performance. The number of learners used was varied accordingly to find a model
that struck a balance between under and overfitting. Increasing the number of learners beyond
a point led to severe overfitting

Random Forests

• We built a model that doesn’t underfit/overfit the data by varying the different parameter
settings of nFeatures, minLeaf and minSplit. As expected, having very low values of minLeaf
and minSplit led to overfitting on the data and conversely, very high values led to underfitting
due to the low model complexity

• We built an ensemble of the decision trees by bootstrapping data using different number of
learners ranging from 5 to 20 to find the model that performs best

The primary objective of this phase was to test various models on subsets of the training data to
quickly identify the types of models which we should build the final learner on. At the end of this
phase, we realized that a stack of learners may do a better job than a single learner (based on the
results obtained and Kaggle scores).

Phase 3 (using GraphLab)

Up until now, the models were built with subsets of the entire data set. With the notion that more
data may improve performance of the chosen models, we used GraphLab for fast model building
on the entire data set.

As the size of the dataset used to build the model increased in this phase, the parameter set-
tings of the individual learners had to be re-tuned accordingly. This was performed in a similar
fashion to Phase 1. In all the four models chosen at the end of Phase 2, we noticed a common
tendency for the model to overfit and predict majority class 0. Keeping in mind the bigger picture
to build an ensemble of these learners, we imposed several complexity measures on these models.
The performance of each of these is shown in Figure 3 along with their complexity controls.

Although each of the individual learners could do a ‘decent’ job at predicting on the test data,
they may still be looked at as a group of weak learners on which an ensemble model can be built.
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Figure 3: Results from Phase 3 (Dataset size: Training = 150,000; Validation = 50,000)

Figure 4: Ensemble model results

Subsequently, we built an ensemble learner on these model predictions, the details of which are
given in the next phase.

Phase 4

With the four models and their predictions, we could build an ensemble to make the final prediction
by either:

1. Predicting the mean of these values, or

2. Building another model on these values

Considering the complexity of the underlying models, we did not want to build another complex
model on top of this and hence decided to build a Näıve Bayes model on these values. Given that
each of the predictions are conditionally independent given the class, we felt this would be a good
model to choose as the assumption behind it would not be violated. The final results are shown
in Figure 4. The performance of this model on the test data (Kaggle) was the best out of all the
learners tested on Kaggle.

• We also observed that ensembling by averaging the predictions fared relatively poorly as
compared to building a Näıve Bayes model on the predictions from the four models

• The ensemble seemed to perform better on the validation data without SVM and hence we
decided to eliminate SVM from being one of the underlying models the ensemble is built on.
Given how different its training and test errors are from the other models, this was to be
expected (shown in Figure 3).

Thus, the final learner built was an ensemble learner that was a Näıve Bayes model over a layer
of Boosted Trees, Random Forests and Logistic Regression models. A holistic view of the entire
process can be seen in Figure 5.
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Figure 5: Holistic view of the model building process

V. Conclusion

Building a learner in machine learning involves a large amount of work trying to understand the
data, how the features interact with each other and with the target while being able to modify
various parameters of the models themselves to achieve better performance.

Every step performed in the model building process should be soundly reasoned. We could choose
to build numerous models, each of a different kind. The key is to constantly try to improve them
while being sure not to underfit or overfit. We also have to make trade-offs with respect to com-
plexity and interpretability every step of the way.

Even though a lot of the steps one would take in the process would be reactive (in terms of chang-
ing the models based on how they perform on the data), it certainly helps to have an overarching,
structured methodology in place upfront.

VI. Team Contribution

Both of us were equally involved throughout all phases of the project. We initially chalked out the
methodology for building the models and then split the tasks in each of the phases as follows:

• Phase 1: Work together to narrow down the set of models to be tested in subsequent phases

• Phase 2: Using subsets of the data, Priyanka experimented with Decision Trees and Random
Forests, while Rahul experimented with SVM and Logistic Regression

• Phases 3 and 4: Each of us built the corresponding learners in GraphLab with the entire
dataset and worked together to build the final ensemble learner
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