FACIAL EXPRESSION RECOGNITION

Rahul Sridhar CS 216 - Project June 2017

OUTLINE

 Problem Data Initial Solution Design Final Solution Design Implementation, Results and Benchmarks •Future Work

PROBLEM

Facial Expression Recognition (FER) Categorize faces based on emotion

Angry Disgust Fear Happy Sad Surprise Neutral

DATA

FER dataset
Source: Kaggle
48x48 grayscale images

	Training	Public Test	Private Test
# Images	28,709	3,589	3,589

Class labels: 0-6 (Angry...Neutral)

INITIAL SOLUTION DESIGN

3-stage pipeline:

- 1. Baseline classifier using either:
 - a. Convolutional Neural Networks (CNN), or
 - b. K-nearest neighbors (K-NN)
- 2. Facial expression generation using InfoGAN
- 3. Feature augmentation to step 1 and build new classifier

FINAL SOLUTION DESIGN

Implemented:

 Gradient Boosted (GB) ensemble using CNN <u>and</u> K-NN (on top n components from Principal Component Analysis)

Implemented, but unused:

Facial expression generation using InfoGAN

Not implemented:

Feature augmentation to step 1 and build new classifier

IMPLEMENTATION, RESULTS AND BENCHMARKS...

		<u> </u>	Prediction Accuracy*		
<u>Classifier</u>		Training	<u>Public Test</u>	Private Test	
PCA + K-NN		-	37%	37%	
CNN		48.5%	47%	48%	
GB Ensemble		-	49%	49%	
Random		14%			
Human		65%			
State-of- the-art	Softmax	65%			
	SVM loss	-	70%	71%	

Ensemble still better than ~25 Kaggle submissions

* Numbers are rounded

IMPLEMENTATION, RESULTS AND BENCHMARKS...

Correctly classified Surprise

Happy

Fear

IMPLEMENTATION, RESULTS AND BENCHMARKS...

Incorrectly classified - Actual (Predicted) Sad (Neutral) Sad (Neutral) Happy (Sad)

CONFUSION MATRIX

IMPLEMENTATION, RESULTS AND BENCHMARKS

Implementation details:

- Data preprocessing: Standardization + Mean Centering
- CNN:
 - #Layers; #Neurons; Filter sizes; Activation; Dropout; Pooling; Regularization; Batch normalization; Horizontal flips; #Iterations; Weight initialization; Batch size; Optimizer
- PCA + K-NN:
 - Components; Number of neighbors; Distance function
- GB Ensemble:
 - # Trees; Maximum depth

IMPLEMENTATION, RESULTS AND BENCHMARKS

Technology:

- Python (Jupyter notebook)
 - TensorFlow (not very fast, but highly flexible)
 - MXNet (fast, but not very flexible)
 - scikit-learn
 - GraphLab

•MacBook Air (i5 processor, 8 GB RAM)

CHALLENGES AND FUTURE WORK

Computationally expensive models
 Better hardware (GPU)

- Test two hypotheses with the state-of-the-art models:
 - 1. Feature augmentation using InfoGAN
 - 2. Ensemble of classifiers

REFERENCES

- 1. Kaggle "Challenges in Representation Learning: Facial Expression Recognition Challenge", 2013
- 2. Chen et al., "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets", 2016
- Y. Tang, "Deep Learning using Linear Support Vector Machines", 2013
- 4. Goodfellow et al., "Challenges in Representation Learning: A report on three machine learning contests", 2013

THANKYOU