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ABSTRACT

Music has become an integral part in the lives of everyone. Every song portrays a
different emotion and people listen to songs that reflect their emotions. The main
aim of this project is to classify the emotion of songs as happy or sad. Emotion
identification has wide applications in the music industry and can be incorporated
as extensions to the existing music players. A fixed dataset that contains
audio-related features such as tempo (the speed of the song measured in beats per
minute), energy (which is obtained by integrating over the power spectral
density), mode (indicating if a song is played in major or minor mode), key
(identifying which of the 12 keys the song has been played in) along with its
lyrics were used for the classification. Different classification algorithms were
used for predicting the emotion using the aforementioned features. Random
forests was used to classify the songs based on audio-related features and Naive
Bayes Classifier for classifying the songs based on their lyrics. Finally, a
combination of both the feature spaces was taken for the classification with
Multi-Layer Graphs.
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CHAPTER 1

INTRODUCTION

Music is integral to our lives. Every song portrays a different emotion. Humans
listen to different songs based on their emotions. A system that can classify songs
based on emotions in real time by considering various features of the songs and
then allows the selection of songs based on emotions can have wide applications
in the music industry. The development of such a system is the objective of this

project.

1.1 Problem statement

This project aims at designing a system that can classify the emotion of songs as
happy or sad. It analyses various features of songs extracted from the audio, and

the lyrics.

The system takes as the input is a dataset containing the audio-related features
of the song like tempo, energy, mode, key, loudness, harmony and lyrics of the
song, and produces as the output contains the predicted emotion of the song. The

objective is to identify the emotion of the song with high accuracy of the prediction.



1.2 Dataset

We have used a subset of the Million Song Dataset (MSD), which is a freely-
available collection of audio-related features and metadata for a million popular
music tracks. The subset contains the audio-related features of 10,000 songs. The
lyrics were extracted for the songs present in the dataset from different popular
lyrics websites. To aid the process, we have also used the dataset provided by
MusixMatch, which contains the important words present in a song along with the

number of occurrences of each of them.

1.3 Organization of the report

The report is organized as follows. Chapter 2 discusses about a few existing
systems for identifying the emotion of songs. The first system uses audio-related
features and the second uses lyrics for the classification. This chapter also
presents the novel approach taken by us against the background of the existing
systems that are mentioned. Chapter 3 contains a detailed design of the systems.
We have explained about the features and the methods we have used for the
classification. Chapter 4 explicates the implementation of the system and presents

the results obtained.



CHAPTER 2

LITERATURE SURVEY

Systems for identifying the emotion of songs have been implemented that help
users in finding songs based on their emotions. Most of the systems perform the
analysis by using audio-related features like tempo, pitch, mode, etc. while some
of them perform the classification based on the lyrical content and the meaning of
the songs. There are very few systems that incorporate both. Some of the existing

systems are given below.

2.1 Audio-related features

Jose Padiel and Ashish Goel, in their project report [4], have developed a music
mood classifier that classifies the songs as happy or sad. They have used only
the audio-related features for classification and their final dataset comprised 223
songs (137 sad and 86 happy). The audio-related features used by them are energy,
tempo, key, mode and harmony. They have used SVM for the classification. SVMs
are supervised learning models with associated learning algorithms that analyze
data and recognize patterns that can be used for classification purposes. Given
a set of training examples, each labelled as belonging to one of two categories
(supervised), an SVM training algorithm builds a model that assigns new examples

into one category or the other.



2.2 Lyrics

Dang Trung Thanh and Kiyoaki Shirai [S], have developed a system that classifies

songs based on lyrics. They use the following three methods for classification.

1. SVM classifier
2. Naive Bayes classifier

3. Graph based method

2.2.1 SVM classifier

The SVM classifier uses the following three features for the analysis of the song.

e Word features
e Word sentiment features

e Artist feature

Word features: All words in the lyrics play a role and hence each word in the

lyrics is considered a feature for classification.

Word sentiment feature: There are certain words that reflect the emotion of the
song directly. These words are called sentiment words. They determine the
emotional polarity of the song. They can either be strengthened or weakened by
adding words like “very much” or “don’t” respectively. These are called the
modifier words. For example, “I love you” implies a positive meaning whereas “I
don’t love you” implies a negation. On the other hand, “I love you very much”

implies a stronger positive meaning. This implies the three types, namely



1. SW (Sentiment word)
2. NEG-SW (Sentiment word with negation)
3. MOD-SW (Sentiment word with modifier)

Artist feature: Certain artists tend to make songs of a particular genre more so
than others. This information aids in the classification. For example, the band
Coldplay mostly makes sad, slow and meaningful songs whereas an artist called

Blake Shelton makes happy country songs.

2.2.2 Naive Bayes classifier

Basic Model: A Naive Bayes classifier is a probabilistic classifier based on
applying Bayes’ theorem with strong independent assumptions. It assumes that
the presence or absence of a particular feature is unrelated to the presence or
absence of any other feature. For example, the lyrics of a song contains the title,
introduction, verse and chorus. According to Naive Bayes classifier, each of these
features contributes independently to the classification regardless of the presence

or absence of the other features.

Significance of chorus and title: The lyrics of each song is divided into several

parts as

1. Title

2. Introduction
3. Verse

4. Chorus
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Among these, the title and chorus play an important role in providing information
about the emotion of the song. The title in general depicts the main theme. The
chorus repeats at least twice with slight variations. This again reflects the theme
of the song. Hence, the classifier adds more weight to the words from the title and

chorus portions of the song.

2.2.3 Graph based methods

A graph consists of nodes and edges. Each node signifies a data item under analysis
and an edge between the two data items (or nodes) describes the relation between
them. In our problem scenario, each song will be a node and the edge between two
songs (or nodes) will be the artist who produced both the songs. A graph of test

data is first built and the Naive Bayes model is used in classifying them.

2.3 Novel approach

We have incorporated a few variations in this project: we have included an extra
audio feature, loudness, and devised a new method to calculate the harmony
features. We have also devised a new approach to combine the audio and lyrics

feature spaces into a single feature space and perform classification based on it.



CHAPTER 3

DESIGN

The analysis of the song is performed with two sets of features, namely its audio-
related features and lyrics . We have used three approaches to identify the song’s
emotion. The first approach considers only the audio-related features, the second
uses only the lyrics, and the third combines both sets of features into a single

feature space.

3.1 Audio features module

The dataset contains the following audio-related features:

e Tempo (the speed of the song measured in beats per minute)

e Energy (obtained by integrating over the power spectral density)

e Mode (indicating if a song is played in major or minor mode)

e Key (identifying which of the 12 keys the song has been played in)

e Loudness (general loudness of the track)

e Harmony (the combination of simultaneously sounded musical notes to

produce a pleasing effect)

3.1.1 LIBSVM

LIBSVM is a library for Support Vector Machines (SVM). SVMs are supervised

learning models with associated learning algorithms that analyze data and
7
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FIGURE 3.1: Audio Features Module 1

recognize patterns that can be used for classification purposes. Given a set of
training examples, each marked as belonging to one of two categories
(supervised), an SVM training algorithm builds a model that assigns new
examples into one category or the other. We have used the Java version of
LIBSVM. The feature extraction has been performed as shown in Figure 3.1. The

pipeline for the classification using LIBSVM is shown in Figure 3.2

Test set

Trainin .
g Predicted
set (Audio
Model classes
feature tralmng predlct
of songs
vectors)

FIGURE 3.2: Audio Features Module 2

The initial input consists of the songs’ labels and their track IDs, which is sent to
the feature extraction module. This module is a Python program that extracts the
required audio features of the songs from the Million Song Dataset and generates

the training set in the required format, as shown in Figure 3.3.

The next step is to partition the data into training and testing datasets for
cross-validation. Cross-validation is a model validation technique for assessing

how the results of a statistical analysis will generalize to an independent data set.



|7 FullTraining.txt 3%

L Lill £:£ 211074947 479,001 O /8434, 734 VU UUDLDL7I00L007

+111:2 2:2 3:128.262 4:-10.223 5:93458.078 6:-0.0674157303371

F1 1:11 2:1 3:126.153 4:-8.797 5:92457.685 G1-0. TZ0T763057SS Song label

+1 1:11 2:2 3:168.849 4:-9.068 5:29542.299 6:0.00403225806452 +1 : Happy
+1 1:6 2:2 3:83.856 4:-8.762 5:142965.971 6:0.0252648736756 ;

+1 1:1@ 2:1 3:146.971 4:-7.958 5:135485.024 6:-0.136759581882 -1: Sad

+1 1:1 2:1 3:197.741 4:-9.436 5:44554.459 6:0.0372285418821

+1 1:6 2:2 3:88.808 4:-8.23 5:44831.802 6:0.0512249443207

+1 1:6 2:1 3:87.653 4:-11.011 5:48235.098 6:-0.215094339623

+1 1:11 2:1 3:107.542 4:-12.896 5:161436.045 6:-0.063244047619

+1 1:5 2:2 3:112.144 4:-15.545 5:34326.796 6:0.128834355828

+1 1:8 2:1 3:116.195 4:-11.761 5:114687.82 6:0.0640640640641

+1 1:4 2:2 3:97.544 4:-9.356 5:61552.944 6:-0.078853046595 Feature number
+1 1:10 2:1 3:100.969 4:-7.098 5:98020.276 6:-0.63119533527 ’
+1 1:2 2:2 3:122.125 4:-3.865 5:28156.165 6:-0.056%3" Correspondlng value
+1 1:9 2:2 3:120.697 4:-5.072 5:48343.663-6-

+1 1:4 2:2 3:69.222 4:-11.528 5;-8465" 85

-1 1:1 2:2 3:175.911 4:-3.122 (5344243, 41167005

-1 1:2 2:2 3:128.962 4:-5.126 5:168915.727 6:0.133663366537

-1 1:4 2:1 3:116.171 4:-11.164 5:-27157.804 6:0.0199600798403

FIGURE 3.3: LIBSVM Input Format

A common type of cross-validation is k-fold cross-validation where the original
dataset is randomly split into k equal sized subsets. Of the k subsets, one is chosen
to be the test set, and the remaining k — 1 subsets are used for training. The
process is then repeated k time (k fold), with each of the k subsets used exactly

once as the test set. The k results can be averaged to calculate the prediction.

We have performed 10-fold Cross-validation on the dataset. The various sets are
given as input to the SVM training module which generates a model file which,
along with the test sets, is given to the SVM predicting module that generates the

output file containing the predicted classes.

3.1.2 LIBLINEAR

LIBLINEAR implements linear SVM. Linear SVM can be used when the training
data are linearly separable, i.e., we can find two hyper planes such that they
separate the data and there are no points between them. In geometry, hyperplane
is a generalization of the two-dimensional plane into an arbitrary number of

dimensions. LIBLINEAR can be used for large datasets and is faster than
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LIBSVM. The training and test sets for LIBLINEAR are the same as the ones
used for LIBSVM.

3.1.3 WEKA toolkit

WEKA stands for Waikato Environment for Knowledge Analysis. It is a freely
available toolkit used for classification purposes. The input file has to be given
in a format known as arff, as shown in Figure 3.4. The name arff stands for
(Attribute Relation File Format). Once the input training and testing files are given,
WEKA automatically applies the chosen algorithm to provide the classification
results. We experimented with different algorithms and decided to work with the

algorithm Random Forests as it produced the best results.

_] FullTrainingS.arff %
jarelation EMOTION

@att ribute @ real Attribute
sl %—?’ Datatype of attribute

@attribute f4 real
@attribute f5 real

@attribute f6

@attributecclass {1,27 Output class
@ATA

5,1,146.313,-7.097,39636.019, -0.0253283302064, 1 1-happy

10,2,112.06,-7.643,20089.905, -0.101333333333,1 2-sad

9,2,205.559,-9.944,69615.857,0.329559748428, 1
7,2,196.327,-3.904,28837.868,0.028328611898, 1
2,2,69.965, -8.339,32445.201,0.0957309184994, 1

FIGURE 3.4: WEKA Input Format

3.1.4 Random forests

”Random Forests” is an ensemble learning method (uses multiple learning
algorithms) for classification that operates by constructing a multitude of decision

trees at training time and producing as output the class that is the mode (most
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frequently occurring) of the classes output by individual trees. We have

implemented the same in Java.

3.2 Lyrics module

We then analysed the lyrics of the song using Naive Bayes classifier.

3.2.1 Naive Bayes classifier

The Naive Bayes module is shown in Figure 3.5

Test set

Naive
Song Lyrics Bayes
name, yre Lyrics Y Trained Output

. extraction . classifier .
artist training set .. model (emotion)
module (training
name, ID
module)
|

FIGURE 3.5: Lyrics

Basic model: A Naive Bayes classifier is a probabilistic classifier based on
applying Bayes’ theorem with strong independent assumptions. The Naive Bayes
classifier assumes the presence or absence of a particular feature is unrelated to
the presence or absence of any other feature. For example, the lyrics of a song
contain title, introduction, verse and chorus. Naive Bayes classifier assumes that
each of these features contributes independently to classification of the song

based on its emotion regardless of the presence or absence of the other features.
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A Python program was written to extract lyrics of the song from two of the most
popular lyrics websites, namely www.azlyrics.com and www.metrolyrics.com
given the song’s name, artist and track ID. The lyrics were kept in two folders,

Happy and Sad, depending on its emotion.

Significance of the chorus and title: The lyrics of each song is divided into

several parts as

1. Title

2. Introduction
3. Verse

4. Chorus

Among these, the title and chorus play an important role in providing clue about
the emotion of the song. The title of the song in general depicts the main theme
of the song. The chorus repeats at least twice in the song with slight variation in
some characteristic words. This again reflects the theme of the song. Naive Bayes
classifier hence adds more weight to these words from the title and the chorus parts

of the song.

3.2.2 NLTK

NLTK stands for Natural Language Toolkit. It is a leading platform for building
Python programs to work with human language data. It provides easy-to-use
interfaces to over 50 corpora, along with a suite of text processing libraries for

classification, tokenization, stemming, tagging, parsing, and semantic reasoning.



13

The implementation of Naive Bayes found in NLTK was used to classify the

songs based on the lyrics.

3.3 Using consensus from multi-layer graphs

Combining multiple features to perform unsupervised and supervised learning is
becoming an increasingly popular approach. We considered the problem of
emotion classification songs based on the audio features and their lyrical content.
The diverse information contained in the audio features and lyrics can enable the
design of more robust and effective classifiers. An approach to create a unified
representation for data samples described by multiple descriptors is to construct
individual graphs and generate a common representation using spectral
techniques (e.g. multi-layer graph clustering)[1].  We have adopted the
graph-based approach and developed a novel algorithm for classification. The

pipeline for the algorithm is shown in Figure 3.6

3.3.1 Feature extraction

e Audio features: The same audio features used in random forests were used

and appropriate normalization is performed.

e Lyrics: The bag of words model of the lyrics has been used. The
bag-of-words model is a simplifying representation used in natural
language processing and information retrieval. A document is represented
as the multi-set of its words, disregarding grammar and word order but

keeping multiplicity (number of occurrences of each word)
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FIGURE 3.6: Training

3.3.2 Multi-layer graph construction

In several scenarios, multiple features are required to describe relationships
between entities. For example, to identify songs belonging to the same emotion,
we need to use both the audio features and the lyrical content. In such cases, we
need to model the relationships for the different features independently, and
combine the information for higher level tasks such as classification. Graphs are
natural candidates for describing entity relationships. In our case, we have a
multi-layer graph where each layer contains the same set of nodes (songs) and the

edges in each layer are different, based on the feature set considered.
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The first step in the algorithm is to construct undirected, weighted and
unsupervised graphs for each layer. Though different graph construction
strategies can be employed, we have used a simple K-Nearest Neighbour
approach with suitable distance functions for the two modalities (audio features
and lyrics). We fix the number of neighbours, K, and for each node we find the K
nearest neighbours and create edges between them. The neighbours are found by
using L distance function (absolute difference between features) and L, distance
function (Euclidean distance) between nodes. Since the graph is weighted, the
adjacency matrix for the graph, which is the matrix depicting the neighbours of

each node, contains the corresponding weights.

For layer 1, we construct the graph using the audio features. Given two features f;

and f; , we measure the edge weight using the formula

Wij = exp(=7lfi — fill2)

if the vertex v; is one of the K nearest neighbours of v;. We have used ¢, distance

function to calculate this.

Computing embeddings

Let us consider a weighted and undirected graph G = {V,E}, where V is the set
of vertices and E is the set of edges. The adjacency matrix W of the graph is a
symmetric matrix whose entry W;; represents the edge weight if there is an edge
between vertex v; and v;, or 0 otherwise. The degree of a vertex is defined as the
sum of the weights of all the edges incident to it in the graph, and the degree matrix

D is defined as the diagonal matrix containing the degrees of each vertex along its
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diagonal. The normalized graph Laplacian matrix L is then defined as
L=D"'2(D-w)D" /2, (3.1)

The Eigen values and Eigen vectors of the normalized Laplacian matrix can be
used to obtain a low-dimensional graph embedding, where nodes that have a high
edge weight are projected close to each other while the nodes with a small edge
weight are placed far from each other. The spectral clustering algorithm [2], groups

the vertices V into disjoint subsets by solving the following minimization problem

rrgn trace (UTLU) s.t. UTU =1, (3.2)

where the matrix U of size N X K (N vertices and K groups) is the embedding and

I is the identity matrix.

Now extending this to our case, we have two undirected graphs G; = {V,E; } and
G, ={V»,E»}. Let us denote the corresponding Laplacians and Embeddings as L,
L, and Uy, U, respectively. Using an approach similar to [1], we infer a consensus
embedding U that is close to both U; and U,. This resulting embedding captures
the relationships described by both the graphs.

3.3.3 Computing projection for novel test samples

For a test sample, described by both audio features and a lyric model, we need to
project it onto the embedding space estimated using the training data. We use an
approach based on sparse coding to achieve this. Sparse coding aims to represent

a data sample as a linear combination of pre-defined basis functions. Given a set
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FIGURE 3.7: Testing

of basis functions stored in a dictionary D, we can sparsely code a data sample y

as

rrgnpl(y—Da) +Ap2(a) (3.3)

where p is the loss function that measures the distance between y and Da, p is the
sparsity regularizer on a, and A is the regularization penalty that controls the trade-
off between loss and regularization. In our case, we use the training data samples
as the dictionary. Since we have two different modalities (audio and lyrics), we

propose to obtain a common representation using the two dictionaries as

minp!" (v~ Xa) + p{*)(h — Ba) + . |jal|, (3.4)

This is not straightforward to solve Equation 3.4. We use the algorithm proposed
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in [3] to obtain the representation a. Now, we compute the embedding for the test

sample as

Usest — Ua. (35)

3.3.4 Classification

For the training data, we learn a 2—class linear SVM classifier using the
embeddings. Now, for a test sample we compute w5 and predict the class using

the SVM classifier.



CHAPTER 4

IMPLEMENTATION

This chapter describes the implementation of the system. First, we have discuss
about features of songs. Then we explain the classification based on audio features,
and that using the lyrics of the songs. We implement the final classification using

multi-layer graphs.

4.1 Audio features extraction from songs

We have used the features of the songs available in the Million Song Dataset. The
following audio feature extraction tools were used to extract the audio features of

the songs given as input.

1. YAAFE (Yet Another Audio Feature Extraction): We experimented with
the YAAFE tool. But many of the required features mentioned were not

available for extraction.

2. MusicBrainz server: MusicBrainz is an open music encyclopedia that
collects music metadata. It has metadata available for all the songs in the
Million Song Dataset (MSD). A local musicbrainz server, 27 GB, in size

was downloaded and set up but connection to its database failed.
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4.2 Manual labelling of songs

Over 800 songs by familiar and unfamiliar artists from the dataset were manually

labelled. Each song was classified with the following labels in mind:

e Happy or Sad
e Fast or Slow

e Heavy or Light

The classified file looked as shown in Figure 4.1

| *ForDV.kxt 3%
Track Id <SEP> Song Id <SEP> Artist Name <SEP> Song Name <SEP> Happy/Sad <SEP> Fast/
Slow <SEP> Heavy/Light

FRAXIYW12903CB4343<5EP>50ESPEBIZABB18193D<SEP>Goatwhore<5EP>Sky Inferno<SEP>Sad<SEP>Slow<SEP>Heavy

TRAXJGG128EF3686D7<SEP>S0IXLZA12A6D4F7664<SEP>TIREHOSE<SEP>Things Could Turn
Around<SEP>Happy<SEP>S1ow<SEP=>Light

TRAXJHG128F427EAQ2<SEP>S0VIHFQ12A8C13BBF1<SEP>3 Doors Down<SEP>Be Like
That<SEP>Sad<SEP>Fast<SEP>Light

TRAXJVO128F42AC534<SEP>SOALEHA12A8C13ECB3<SEP>Martina McBride<SEP>Thanks A
Lot<SEP>Sad<SEP>S1low<SEP>Light

TRAXKPM12903D0611E<SEP>SONERDT12ABO17EE72<SEP>Blue Rodeo<SEP>Never Look
Back<SEP>Happy<SEP>S1ow<SEP>Light

TRAXKRW128F93013DF<SEP>SODPNRD12AB017FB2F<SEP>Modern Day Escape<SEP>Let's Get
Sweaty<SEP>Sad<SEP>Fast<SEP>Heavy

TRAXLAY12903CA8612<SEP>SONJYDQ12AB0O18BOF7<SEP>The Sugarhill Gang<SEP>8th
Wonder<SEP>Happy<SEP>Fast<SEP>Light

TRAXLIU128EA7860D4<SEP>SOFECIK12A6701DA51<SEP>DMX<SEP>I"'ma Bang<SEP>Sad<SEP>Fast<SEP>Heavy
TRAXLPR128F428E466<SEP>SOPRMDL12A8C13CAF6<SEP>The White Stripes<SEP>A Martyr For My Love For You

Plain Text + Tab Width: 8 ~ Ln3, Col1 INS

FIGURE 4.1: Classified Songs

We have used only the emotion of the song (happy/sad) for classification. The
other labels can be used in the future. Some songs were found to be neither happy

nor sad and they had to be omitted. The final dataset comprised 500 songs.



21

Key Name Key Number Frequency(Hz)

A0 1 27.500
AO# 2 29.135
BO 3 30.868
Cl 4 32.703
Cl# 5 34.648
D1 6 36.708
D1# 7 38.891
El 8 41.203
F1 9 43.654
F1# 10 46.249
Gl 11 48.999
Gl# 12 51913

TABLE 4.1: 12 Keys and Frequencies

4.3 Audio features used

The following audio features were used.

1. Key: Itidentifies which of the 12 keys (labelled as 1 to 12) the song has been
played in. The 12 keys and their corresponding frequencies are given below.

2. Mode: Mode defines the set of musical notes used in a song. There are
predominantly two types, minor and major.

3. Tempo: Tempo refers to the speed of the song (measured in beats per
minute).

4. Energy: Energy is the work done to produce a tone at a particular
frequency. The SegmentsTimbre table in the MSD consists of 12 columns
each representing a key. The song is split into 0.3 seconds long segments.
Each segment along with its 12 corresponding frequency values makes up a

row. For example, a song that is 6 minutes long (360 seconds) is divided
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into 1200 segments thus resulting in a 1200 x 12 table for that song. The
sum of all values in the matrix is taken as the overall energy of the song.

5. Loudness: It refers to the general loudness of the track and is the perception
of amplitude.

6. Harmony: Musically speaking, most happy-sounding harmonies contain
the root note of the song (key) and the note that follows it after four
semitones, while most sad-sounding harmonies contain the root note and
the note that follows it after three semitones. A semitone is defined as the
smallest interval used in music, equal to half a tone; a half step.

We have taken this as the basis of our approach in calculating the harmony
features. The “SongsPitch” table in the MSD contains the
SongSegmentNumber along with the contribution of each one of the 12
notes in each segment. We take the number of the segments in which the
key, the third and the fourth semitones dominate the segment and store the

values. These will be used as the harmony features.

4.4 Analyzing the features and their combinations

All the features listed above are stored in the Million Song Dataset as HDFS files.
HDF stands for Hierarchical Data Format. It is designed to store and organize large
amounts of numerical data. We wrote a small tool in Python that takes the song’s
name as input and extracts the required audio-related features from the dataset.

This program makes use of h5py, a Python package that provides an interface to

the HDF5 data format. The HDFS5 file is shown in Figure 4.2 and Figure 4.3
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File Window Tools Help

EE

‘ FilefURL Iu me/rahulsridhar/Proj MillionSongSubset/data/a/A/ATRAAAAW] 28F429D538.hS -

|®1 TRAARAW 28F 42905 38.hs - -
9 @ analysis
I bars_confidence
[ bars_start
[ beats_confidence
B beats_start
[ sections_confidence
[ sections_start

[ segments_confidence

[ segments_loudness_

[ segments_loudness

12.404 -35.23.
2.008 -28.08
5.277 -33.643
-95.45 16.998
-25.363 -43.958
-52,247 -33.303
183.82  |[23.324
-17.892 -23.638
-18.078 -27.054
117.504  |2.064

-97.926 19.985
26

B segments_loudness_:

[ segments_pitches

[ segments_start
[ [segments_timbre
B3 sonas
[ tatums_confidence
[ tatums_start

o2 metadata

o 24 musicbrainz

| &

-121.666

Table to extract the energy of the song

segments_timbre (26962) =
64-bit floating-point, 971 x12
Number of attributes = 4
CLASS = EARRAY
VERSION = 1.0 -
v £ Himbra of MECCliea)

Loginfo | Metadata |

FIGURE 4.2: HDF Dataset, SegmentsTimbre Table

File Window Tools Help

/home/rahulsridhar/Project/MillionSongSubset/dataf/A/ATRAAAAWL 28F4290538.h5

FilefURL

[B] TRaARAW1 28F429D538.05 | I Fg Tableview - songs - fanalysis/ - thomejrahulsridhar/Project/MilionSongsubset/data/A/AMATRALALWL 28F429D538.h5 (0

¢ @ analysis Table M
B bars_corfidence ‘
[ bars_start IR .

[ beats_confidence
[ beats_start

[ sections_confidenc
[ sections_start

P
1...|idx segm...|idx tatum...|idx tatum. ke key confi.#| loudness’ mode Ymode co..|start of f, tempo ime_sign...|time sign...| track id
(o] 0 0 0 1 0.736 -11.197 0 .636 218,932 92.198 0.778 TRAAAAW..,

[ segments_confiden|
[ segments_loudnesq_|
R cegments Joucnes Key : 1 Mode : 0 Tempo : 92.198
[ segments_loudnes:
B segments_pitches
[ segments_start
B segmants timbre Loudness : -11.97
[ songs
[ tatums_confidence
B tatums_start
5 @ metadata
artist_terms
[ artist_terms_freq
I artist_terms_weight|<|

L] 0 >l il i y
songs (10100) [=]
CompoundiVvdata, 1 =
Number of attributes = 66
CLASS - TABLE
VERSION = 2.6 L
TMLE — tahl f Erha Mast anahisic far an, i 2

Log Info_| Metadata

FIGURE 4.3: HDF Dataset, Songs Table

Each feature will contribute to predict the emotion of the song. Energy and tempo
were taken as the main features and combinations with other features (mode, key,

loudness and harmony) were tried out and the results of the analysis were noted.

Separate approaches were used for classification based on audio-related features
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and lyrics: Random Forests was chosen to classify the songs based on audio
features and the implementation of Naive Bayes found in NLTK (Natural

Language ToolKit) was used to classify based on lyrics.

4.5 Classification based on audio features

This section explains how the songs are classified using the audio features alone.

45.1 LIBSVM

The training set file was prepared in the appropriate format and given as input
to the SVMtrain Java program. This creates a model file. The model file, along
with the test set, is given as input to the SVMpredict program. The final output
file generated by SVMpredict contains the predicted classes of the test set. 10-fold
Cross-validation was performed and the prediction accuracy in each case was noted
(for an initial set of 110 songs), as given in Table 4.2. The cross-validation results,
along with the training set and test set, are given in Figure 4.4 and Figure 4.5

respectively. The output is shown in Figure 4.6

4.5.2 LIBLINEAR

Initially, when the dataset was small (110 songs), the results obtained from
LIBSVM were satisfactory. However, when the size of the dataset was increased
to 500 songs, the results were biased towards the major class in the training set

(’sad’). Hence we opted for LIBLINEAR.
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[ 3 FullTraining.txt 3

L Lill £:£ 211074947 479,001 O /8434, 734 VU UUDLDL7I00L007

$1)1:2 2:2 3:128.262 4:-10.223 5:93458.078 6:-0.0674157303371

F1 1:11 2:1 3:126.153 4:-8.797 5:92457.685 G1-0. TZ0T763057SS Song label

+#1 1:11 2:2 3:168.849 4:-9.068 5:29542,299 6:0.00403225806452 +1 : Happy
+1 1:6 2:2 3:83.856 4:-8.762 5:142965.971 6:0.0252648736756 7

+#1 1:10 2:1 3:146.971 4:-7.958 5:135485.024 6:-0.136759581882 -1: Sad

#1 1:1 2:1 3:197.741 4:-9.436 5:44554.459 6:0,0372285418821

+1 1:6 2:2 3:88.808 4:-8.23 5:44831.802 6:0.0512249443207

+1 1:6 2:1 3:87.653 4:-11.011 5:48235.098 6:-0.215094339623

+#1 1:11 2:1 3:107.542 4:-12.896 5:161436.045 6:-0.063244047619

+#1 1:5 2:2 3:112.144 4:-15.545 5:34326.796 6:0.128834355628

+#1 1:8 2:1 3:116.195 4:-11.761 5:114687.82 6:0.0640640640641

#1 1:4 2:2 3:97.544 4:-9.356 5:61552.944 6:-0.078853046595 Feature number
+#1 1:10 2:1 3:100.969 4:-7.098 5:98020.276 6:-0.63119533 .
+1 1:2 2:2 3:122.125 4:-3.865 5:28156.165 6:-0.05573 Corresponding value
+1 1:9 2:2 3:120.697 4:-5.072 5:48343, 66360

+#1 1:4 2:2 3:69.222 4:-11.528 5,.3465 5

-1 1:1 2:2 3:175.911 4:-3.122 (5344243. 411670, 05

-1 1:2 2:2 3:128.962 4:-5.126 5:168915.727 6:0.133663366537

-1 1:4 2:1 3:116.171 4:-11.164 5:-27157.804 6:0.0199600798403

FIGURE 4.4: LIBSVM Training Set

*Untitled Document 1 %
+1 1:5 2:1 3:146.313 4:-7.097 5:39636.019 6:-0.0253283302064
+1 1:10 2:2 3:112.06 4:-7.643 5:20089.905 6:-0.101333333333
+1 1:9 2:2 3:205.559 4:-9.944 5:69615.857 6:0.329559748428
+1 1:7 2:2 3:196.327 4:-3.904 5:28837.868 6:0.028328611898
+1 1:2 2:2 3:69.965 4:-8.339 5:32445.201 6:0.0957309184994
+1 1:1 2:1 3:130.35 4:-5.968 5:8400.23 6:-0.19755826859
+1 1:11 2:2 3:129.282 4:-13.229 5:-11225.747 6:0.0607814761216
+1 1:3 2:2 3:117.696 4:-9.67 5:69371.834 6:0.1625
+1 1:7 2:2 3:119.959 4:-9.736 5:-43364.39 6:0.0297176820208
+1 1:4 2:2 3:91.003 4:-7.493 5:35047.308 6:0.136595310907
-1 1:10 2:2 3:141.553 4:-13.232 5:29051.729 6:0.0392156862745
-1 1:2 2:2 3:113.726 4:-26.045 5:35536.864 6:0.0534069981584
-1 1:7 2:2 3:91.637 4:-9.38 5:9205.483 6:0.0585106382979
-1 1:8 2:2 3:124.285 4:-4.938 5:49469.166 6:-0.061135371179
-1 1:11 2:2 3:161.697 4:-6.084 5:101847.061 6:0.0296296296296
-1 1:1 2:2 3:170.046 4:-4.183 5:41020.573 6:0.0640776699029
-1 1:1 2:1 3:95.147 4:-10.951 5:28168.878 6:0.0538922155689
-1 1:8 2:1 3:126.747 4:-16.794 5:21870.793 6:0.0191387559809
-1 1:4 2:1 3:166.057 4:-4.297 5:38970.23 6:-0.112618724559
-1 1:9 2:1 3:115.277 4:-6.991 5:154858.972 6:-0.00318066157761| [y

FIGURE 4.5: LIBSVM Test Set

[ ] output 3% [ songset3 ® | songtest.t 3% | [ output2 ® | | *TestSet.t %

ﬂ‘% 1.0: Happy
; 1.0 : Sad

T e e

o e e
o oo o o\g

FIGURE 4.6: LIBSVM Output

LIBLINEAR implements linear SVM. It can be used for large datasets and is faster
than LIBSVM. The input training set and test set for LIBLINEAR 1s similar to that

of LIBSVM. The accuracy of classification obtained during cross-validation was

56%. The LIBLINEAR output is shown in Figure 4.7
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Test set number Accuracy (%)
50
70
50
50
60
60
50
50
50
10 50
11 90
Average 57.2

0N ON N B~ W~

\O

TABLE 4.2: Cross-validation results

rahulsridhar@ubuntu:~$ cd /usr/local/liblinear
rahulsridhar@ubuntu:/usr/local/liblinear$ clear

rahulsridhar@ubuntu:/usr/local/liblinear$ ./1ltrain -s 2 -v 18 -q fullTraining/s

caledTraining R ’

Cross Validation Accuracy¢S 56.4677%) Cross validation accuracy = 56.4677%
rahulsridhar@ubuntu: /usr/local/Tiblinear$

rahulsridhar@ubuntu: /usr/local/liblinear$
rahulsridhar@ubuntu: /usr/local/liblinear$ ./1ltrain fullTraining/scaledTraining

optimization finished, #iter = 26

Objective value = -378.965140

nsv = 402

rahulsridhar@ubuntu:/usr/local/liblinear$ ./predict fullTraining/scaledTest.t sc

aledTraining, model output 5

Accurac 62} Accuracy for given test set = 51.9608%

vl
rahulsridhar@apuntu: /usr/local/liblinear$ JJ

FIGURE 4.7: LIBLINEAR output

4.5.3 WEKA toolkit

The input file for the WEKA toolkit was prepared in the required arff format.

Cross-validation sets were created using a Python program. This program takes as
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input the entire set of 500 songs and creates training and test sets to facilitate 10-
fold cross-validation (as shown in Figures 4.8, 4.9 and 4.10). Training and testing
was done using various classifiers in the toolkit and the results were noted. The
performance of Random forests was found to be the best amongst all. Hence, we

chose Random forests for classification based on audio features.

[ FullTraining5.arff 3%
larelation EMQTION

@attribute FTreal Attribute
L @ Datatype of attribute

@attribute f4 real

@attribute f5 real

@attribute f6

@aminute@ Output class
@DATA

5,1,146.313,-7.097,39636.019, -0.0253283302064, 1 1-happy
10,2,112.06,-7.643,20089.905, -0.101333333333, 1 2_sad
9,2,205.559,-9.944,69615.857, 0.329550748428, 1

7,2,196.327,-3.904,28837.868, 0028328611898, 1

2,2,69.965, -8.339,32445.201,0.0957309184994, 1

FIGURE 4.8: WEKA training set

L] FullTests.arff %

lgrelation EMOTION

@attribute f1 real

@attribute f2 real

@attribute f3 real N
@attribute f4 real

@attribute f5 real

@attribute fé6 real

@attribute class {1,2}

@DATA
7,2,86.535,-10.006,165915.775,0.049147442327,1
0,2,120.168,-12.102,11023.329,0.123680241327,1
0,2,126.725,-5.646,-54481.88,0.0415973377704, 1
4,2,168.242,-6.653,190473.83,0.029975020816,1
2,132.021,-3.092,117553.248,0.00790513833992,1
104.796,-1.81,108803.27,0.0222841225627,1
139.981,-10.915,-19706.374,0.0456273764259,1
101.439,-8.316,58378.623, -0.0452155625657,1
96.071,-5.849,37760.445,0.0338164251208,1
138.581,-5.15,50658.957,0.0509259259259, 1
91.413,-8.471,59964.351,0.0951188986233,1
125.991,-14.475,148762.041, -0.0409062303335,1
155.843,-2.689,102128.459,0.0446320868516,1
126.689,-9.609, -8965.739,0.0145867098865, 1
167.559,-5.67,207040.298,0.0569892473118,1
165.261,-11.902,27386.38,-0.0755355129651, 1
78.959,-4.657,92590.471,0.0325278810409,1
,122.348,-8.365,60500.256,0.0652173913043,1

1

16.49,-13.448,108317.605,0.0440587449933,1
175 18Q .4 A2 1AA17Q 18 .A 12AA2A1S1ATR 1
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FIGURE 4.9: WEKA test set
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Preprocess | Classify | Cluster | Associate | Select attributes | Visualize | Forecast | Projection Plot [ Visualize 3D | Parallel Coordinates Plot |

Classifier

RandDmFﬂreSt 410 K0 -51 -num-slots 1

Test options Classifier output

) Use training set I

Random forest of 10 trees, each constructed while considering 3 random features.
@ Supplied test set Out of bag error: 0.44

) Cross-validation

) Percentage split i
Time taken to build model: 0.07 seconds

| More options... |

=== Evaluation on test set ===

Correctly classified :61%
Incorrectly classified : 39% L

(Nom) class ‘v Time taken to test model on supplied test set: 0 seconds

=== Summary ===
| Start | Run on server |
Correctly Classified Instances 61 61 %
Result list {right-click for options) Incorrectly C}asslfled Instances 39 39 %
Kappa statistic 0.22
et o et Mean absolute error 9,476
13:54:47 - rules.MODLEM Root mean squared error 0.5314
13:55:37 - trees.RandomForest Relative absolute error 95.2 %
13:55:53 - trees.RandomForest Root relative squared error 104,9508 %
Coverage of cases (0.95 level) 97 % [}
Mean rel. region size (0,95 level) 97.5 %
Total Number of Instances 100

=== Detailed Accuracy By Class === 3

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.580 0.360 0.617 0.580 0.598 0.220 0.577 0.544 1

0.640 0.420 0.604 0.640 0.621 0.220 0.577 0.553 2
Weighted Avg. 0.610 0.390 0,610 0.610 0,610 0,220 0.577 0,549

=== Confusion Matrix ===

a b <-- classified as
2921 a=1
18:32| biciz

Status

oK Log w x0

FIGURE 4.10: Result of Random forest

4.5.4 Random forests

We have implemented Random forests and modified it to our specifications. The
coding was done in Java with NetBeans as the frontend. Several decision trees
were created using a combination of all audio features (energy, tempo, mode, key,
loudness and harmony). Each node in the tree represents a feature and has 2 child
nodes, one node to represent feature values greater than the corresponding feature’s
average value and one to represent feature values lesser than the average. The

average value was calculated based on the following formula:

| avgH — avgS |*| countH — countS |
avg = avgl —

countT

where



avg:  weighted average value
avgT: average of all songs
avgH: average of happy songs
avgS: average of sad songs
countH: count of happy songs
countS: count of sad songs

countT: count of all songs

29

The trees are of different depths, depending on the number of features used in

creating them. Two sample trees are given in Figure 4.11 and Figure 4.12.

Figure 4.13 describes the random forests module.

Energy
<avg >avg

Tempo Tempo

<avg >avg <avg >avg

E E E E

FIGURE 4.11: Random Forest - Decision Tree 1
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Mode
<avg >avg
Tempo Tempo
<5V Y"g <3V7 YWE%
Energy Energy Energy Energy

<avg/ kavg <avg/ kavg <avg/ kavg <avg/ kavg

FIGURE 4.12: Random Forest - Decision Tree 2

avg: weighted average

E: predicted emotion

Test set
Audio Final decision
features input Decision tree based on Predicted
(training set) construction mode of class
all trees

FIGURE 4.13: Random Forests module

The training set, prepared in the appropriate format was then given as input to the
program which created decision trees based on it. Testing was done by comparing

the test data with all decisions trees and storing each tree’s prediction. Finally, the
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mode of all predictions were taken and compared with the actual emotion of the

song.

The results were noted, with and without including the new features, namely
loudness and harmony. When they were not included the average accuracy was
56.25% but when they were included the average accuracy came up to 61%, thus
justifying our decision to include those features. The results from random forests

are shown in Figures 4.14 and 4.15.

TREE : &
MLEBH
[1.5, -8.444601933351084, -2.444601933351084, 48410.53186349001, 48410.53186349001, 48410.53186343001, 46410.53186349001, 0.01638619144

Tree Correct Count is 65
Tempo, loudness, energy, harmony

Tree Wrong Count is 34

TREE :

TLEH

[125.65666082410324, -B8.444601933351084, -8.444601933351084, 46410.53186349001. 48410.53186345001, 48410.53186349001, 48410.53186345001
Tree Correct Count is 56 Correct Count 56

Tree Wrong Count is 43.__________—_—_—___—
Wrong count : 43

Final Results For 4 Feature Trees:
Correct: 65
Wrong: 34

TREE :

MTLEH
[1.5, 125.65666082410324, (125.65666082410324, -8.44496019333510849),
Tree Correct Count is 54

-8.444601933351084, -8.444601933351084, -8.444601933351084, 48410.531:

Tree Wrong Count is 45

Average values of
s features

CorrectCount=66
WrongCount=33
Accuracy = 66.66666666666666

< >

FIGURE 4.14: Output of Random Forest

A front-end was designed using NetBeans IDE and it allows the user to select a
dataset from the given 5 datasets and correspondingly choose the happy or sad

songs in them.
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Tree Wrong Count is 32

TREE :

TLE

[125.65666082410324, —8.444601933351084, —8.444601933351084, 0.016386191440703815, 0.016386191440703815, 0.016386191440703815, 0.016386
Tree Correct Count is 53

Tree Wrong Count is 46

TREE :

TEE

[125.65666082410324, 48410.53186349001, 48410.53186349001, 0.016386191440703815, 0.016386131440703815, 0.016386191440703815, 0.01638619:
Tree Correct Count is 55

Tree Wrong Count is 44

TREE :

LEE

[-8.444601933351084, 48410.53186349001, 48410.53186349001, 0.016386191440703815, 0.016386131440703815, 0.016386191440703815, 0.01638619:
Tree Correct Count is 67

Tree Wrong Count is 32

_ Final results of 3
Final Results For 3 Feature Trees:
Corzect:67 feature trees : 67%

Wrong:32

< >

FIGURE 4.15: Output of Random Forest

4.6 Classification based on lyrics

We wrote a small utility in Python to extract lyrics automatically from two popular
lyrics websites, which takes the song name and artist name as input. The program
formats the input accordingly for each website and extracts the lyrics. The websites

used are

1. AZlyrics.com: The appropriate format

www.azlyrics.com/ArtistName/SongName.html

2. Metrolyrics.com: The appropriate format

www.metrolyrics.com/SongName-1lyrics—ArtistName.html

The extracted lyrics were all stored in two separate folders, one for happy songs
and the other for sad. This comprises the dataset for lyrics. A sample lyrics file is

shown in Figure 4.16.
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4 o Classificationjava 3 = Classifierjava 3 = IFeatureProbability.java % musixExtract.py =

Ticker chal Song name : Wicker Chair

In your L[ittle white w air
Unsuspecious nobody cares for yo
You're so fucked up again

You laugh at nothin' in the pouring rain Start Of the Iyncs

Try to tell yourself you're not insane
You fool, I hate you sometimes

Hey, you know it ain't coincidental that you're lost in place
It's drippin' off your face, and you're losin' your precicus mind

Send me a postcard if you get that far

You got a couple pennies in your rusty jar

The truth you've been gone for awhile

It's hard lookin' at you when you lock that way
With your one night stands and your sleep all days
Ooh you're such a slut sometimes

Choruss Chorus

Hey, you know it ain't coincidental that you're lost in place
It's drippin' off your face, and you're losin' your precious mind

You're losing your mind :
ot rick End of lyrics

FIGURE 4.16: Song lyrics

4.6.1 Word list

A 6800 strong word list containing two sets of words viz positive words and
negative words were used. Each song was classified by counting the number of
times a word from each of these list appears in its lyrics. The emotion was
predicted by a numerical comparison of the positive and negative counts. A
prediction accuracy of 58% was obtained. This is acceptable since the word list is

not exhaustive and can be improved.

4.6.2 Bag of words

The dataset provided by musiXMatch was used. It contains a set of the most
frequently occurring words along with their frequencies for 2 lakh songs present
in the million song dataset. A Python program was written to extract the bag of

words for the 500 songs in our dataset. The bag of words representation of the
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lyrics is as shown in Figure 4.17. LIBLINEAR was used to classify the same. A

prediction accuracy of 53% was obtained.

L] *bagOfwords (copy).txt 3%
TRAPGOC128F932F01A 1:8 2:3
28:1 29:81 3312 41:5: 46:1 561
732:2 2452:3 2997:3 4993:3

TRASXHB128F933D3BD 1:7 2:6
235225521 2653 3122 3352 34

35 406 5i2x F:2 809 9:4 1123 12:0 144 16:4. 1715 18:3 2947 2356 2/.6 E
3 '62:6 64:6 76:3 88:3 129:9 213:2 22]1:6 251:9 348:3 362:2 453:12 518:2 °

4:7 bi2 6i3 112 814 9:2 10:2 11:1 1222 1524 16:2 1122 2012 2112 22
1 3551 3751 39:1 4821 49:18 54:2 .55:1 56:1. 62:2 79:1 82:4 83:1 95:1

96:2 107:1 120:1 122:1 127:2 131:1 176:1 182:2 249:2 261:1 289:1 294:1 307:1 339:5 358:1 368:1

393:2 419:2 472:1 563:2 549:
1457210, 15711 17151 222201

TRASXSI128F9345EA2 1:8 2:4
3:2 34:1 35:2 39:
74 199:3 113:1

8222 328:1 3
1390:1 1638:1 R025:1 3344:1

Track ID

:1 426:1 458:1 506:1 661:

2 56750, 64040 6791 F16:0 Fibel 79350 F97c2 84251 99900 10211 1929:1
2774:1 2919:1 3317:1 4168:1 4473:1

3:8 ‘414 5:3 108 10:2 T71:9 12:101 14:2 15:1 17:1 1874 20:3 22:1 23:3 27:3
2 43:3 44:] 4832 49:]1 54:2 b5:2 H8:3 59:3 61:]1 62:1 63:1 68:1 71:1
131:2 146:3 147:2 152:1 (!3@ 196::3 2271 256:3 258:1. 2701 27951

1] 768:1 +2 813:1 833:2 1064:1 1156:1 1360:2
3561:1 4264:4

Word number  Number of occurrences

FIGURE 4.17: Bag of Words

4.6.3 Naive Bayes classifier

An existing implementation of Naive Bayes classifier in Java was initially used to

classify lyrics. Separate

lyric sets are used for training and testing. The output is

predicted either as positive, representing happy, or as negative, representing sad.

The classification results are shown in Figure 4.18

TRAAEWG128F930B3A4. txt:
positive
TRACBWP128C7196948. txt:
negative
TRAADNA128F9331246. txt:
positive
TRACHHH128E0788A35. txt:
negative
TRAASZE128F93499AE. txt:
negative
TRADJKG12903CEQ49F . txt:
positive

19 6

—_— Happy songs accuracy : 54%
15, 11

Sad songs accuracy : 58%
20 20
. 0,
—_ Overall accuracy : 56%
30 27

HAPPY SONGS ACCURACY=54.0%
SAD SONGS ACCURACY=58.0%

OVERALL ACCURACY=56.0%

ramanathan@ramanathan-VirtualBox:~/Documents/Project/naive bayes final$ [J

FIGURE 4.18: Output of Naive Bayes classifier
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4.6.4 NLTK

NLTK stands for Natural Language Toolkit. It is a suite of libraries and programs
for Natural Language Processing (NLP) for Python programming language. The
implementation of Naive Bayes found in NLTK was used to classify the songs
based on lyrics. The results obtained were accurate up to a maximum of 75% in
certain cases (as shown in Figures 4.19 and 4.20).

rahulsridhar@ubuntu:~/Project/musiXMatch/bow/nltk$ pythen naiveBayes.py

train on 418 instances, test on 86 instances
Most Inforgative Features
hey = True pos : neg = 7.6 : 1.0
band = True pos : neg = 5.8 :1.0
buy = True neg : pos = 5.4 : 1.0 . . .
sleep = True neg : pos = 5.4 : 1.0 TeStIng instances : 86
peace = True neg : pos = 5.4 : 1.0
hot = True pos : neg = 5.3 : 1.8
power = True pos : neg = 5.2 T 1.8 it ) )
MISLake = True Teqg : pos = 4.7 ¢ 1.0 Trall’lll’lg InStanceS = 418
afraid = True neg : pos = 4.7 : 1.0
bitch = True neg : pos = 4.7 : 1.0
push = True neg : pos = 4.7 : 1.0
sleeping = True neg : pos = 4.7 : 1.0
killing = True neg : pos = 4.7 : 1.0
honey = True pos : neg = 4.6 : 1.0
tears = True neg : pos = 4.5 : 1.8
three = True pos : neg = 4.2 : 1.0
Somewhere = True neg : pos = 4.0 : 1.0
train = True neg : pos = 4.0 : 1.0
strength = True neg : pos = 4.0 : 1.0
Send = True neg : pos = 4.0 : 1.0
anyone = True neg : pos = 4.0 : 1.0
o = True neg : pos = 4.9 ;: 1.0
pop = True pos : neg = 4.0 : 1.0
desire = True pos : neg = 4.0 : 1.0
Give = True pos : neg = 4.0 : 1.0
Accuracy :
73.2558139535 Accuracy =73.25%

rahulsridhar@ubuntu:~/Project/musiXMatch/bow/nltks$ ||

FIGURE 4.19: Output from the Naive Bayes classifier of NLTK for a training set
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rahulsridhar@ubuntu:~$ cd Project/musiXMatch/bow/nltk
rahulsridhar@ubuntu:~/Project/musiXMatch/bow/nltk$ clear
rahulsridhar@ubuntu:~/Project/musiXMatch/bow/nltk$ python naiveBayes.py
train on 380 instances, test on 56 instances

Most Informative Features

hey = True pos : neg = 7.0 : 1.0
pretty = True pos : neg = 6.3z 1.0
worth = True neg : pos = 6.3 : 1.0
moment = True neg : pos = 57 10

kid = True pos : neg = 5.7 : 1.8
sleep = True neg : pos = 5.4 : 1.0
tears = True neg : pos = 5.0 : 1.0
afraid = True neg : pos = 5.0 : 1.0

sleeping = True neg : pos = 5.0 :1.0

tear = True neg : pos = 5.0 : 1.0
Always = True pos : neg = 5.0 : 1.0

hot = True pos : neg = 4.6 : 1.0

move = True pos : neg = 4.4 : 1.0
cross = True neg : pos = 4.3 1.8

read = True pos : neg = 4.3 : 1.0
desire = True pos : neg = 4.3 : 1.0

buy = True neg : pos = 4.3 :1.8

guy = True pos : neg = 4.3 : 1.0

uh = True pos : neg = 4.3 : 1.0
stone = True pos : neg = 4.3 : 1.0
peace = True neg : pos = 4.3 % 1.0

Did = True neg : pos = 4.3 : 1.0

foot = True pos : neg = 4.3 : 1.0

G = True pos : neg = 4.3 : 1.0
alive = True pos : neg = 4.3 :1.8
Accuracy :
71.4285714286 Accuracy = 71.42%

rahulsridhar@ubuntu:~/Project/musiXMatch/bow/nltk$ i

FIGURE 4.20: Output from the Naive Bayes classifier of NLTK for a different training set

4.7 Using consensus from multi-layer graphs

All the modules have been implemented in Python. The audio features and bag of
words are stored in separate matrices. These are given as input to the main driver
module. KNN graphs are constructed for both audio features and bag of words.
The compute embedding module creates an embedding which is a combined
representation of both the graphs. This represents the training data. The sparse
code module creates a sparse representation of the test data and returns training

samples closest to it. This makes up the test data.

The training data and test data are given as input to SVMTrain and SVMPredict

which outputs the prediction accuracy as shown in Figure 4.21.



rahulsridhar@ubuntu: ~/Project/MultiLayerGraph/Python

rahulsridhar@ubuntu:~/Project/MultiLayerGraph/Python$ python -W ignore driver.py
MmCorpus (100 documents, 5493 features, 11864 non-zero entries)

MmCorpus (24 documents, 1423 features, 2591 non-zero entries)

(6, 100)

(6000, 100

Accuracyl= 66.6667%.X16/24) (classification)

[1.e, 1.0, 1. .6, 1.9, 1.8, 2.0, 2.6, 2.6, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
5 2.0 2.0:2.0, 1:0; 2:0]

buntu:~/Project/MultilayerGraph/Python$ [j

Accuracy = 66.67%

FIGURE 4.21: Multi Layer Graph
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CHAPTER 5

CONCLUSION AND FUTURE WORK

We implemented a system to identify the emotion of the songs and discussed the

detailed design and implementations of the algorithms used in the report.

The classification based on audio-related features was initially done using
LIBSVM. It worked quite decently for small datasets. However, on increasing the
size of the dataset, the prediction became biased towards the major class in the
training set. Similar problems were encountered while using LIBLINEAR. We
then experimented with different classifiers from the WEKA toolkit. Random
forests produced the best results. We implemented the same in Java, modifying it

according to our specifications and used it to classify the songs.

For classification based on lyrics, the word list approach and the bag of words
approach were tried individually. The results were not satisfactory. Finally, we
zeroed in on the Naive Bayes classifier. The implementation of Naive Bayes in

NLTK was used for the classification based on lyrics.

For classification based on a combination of the feature spaces, multi-layer graphs
was used. The results obtained from testing on smaller datasets look promising. It

can be tested on bigger datasets in the future.
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