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ABSTRACT

Music has become an integral part in the lives of everyone. Every song portrays a

different emotion and people listen to songs that reflect their emotions. The main

aim of this project is to classify the emotion of songs as happy or sad. Emotion

identification has wide applications in the music industry and can be incorporated

as extensions to the existing music players. A fixed dataset that contains

audio-related features such as tempo (the speed of the song measured in beats per

minute), energy (which is obtained by integrating over the power spectral

density), mode (indicating if a song is played in major or minor mode), key

(identifying which of the 12 keys the song has been played in) along with its

lyrics were used for the classification. Different classification algorithms were

used for predicting the emotion using the aforementioned features. Random

forests was used to classify the songs based on audio-related features and Naive

Bayes Classifier for classifying the songs based on their lyrics. Finally, a

combination of both the feature spaces was taken for the classification with

Multi-Layer Graphs.
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CHAPTER 1

INTRODUCTION

Music is integral to our lives. Every song portrays a different emotion. Humans

listen to different songs based on their emotions. A system that can classify songs

based on emotions in real time by considering various features of the songs and

then allows the selection of songs based on emotions can have wide applications

in the music industry. The development of such a system is the objective of this

project.

1.1 Problem statement

This project aims at designing a system that can classify the emotion of songs as

happy or sad. It analyses various features of songs extracted from the audio, and

the lyrics.

The system takes as the input is a dataset containing the audio-related features

of the song like tempo, energy, mode, key, loudness, harmony and lyrics of the

song, and produces as the output contains the predicted emotion of the song. The

objective is to identify the emotion of the song with high accuracy of the prediction.

1
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1.2 Dataset

We have used a subset of the Million Song Dataset (MSD), which is a freely-

available collection of audio-related features and metadata for a million popular

music tracks. The subset contains the audio-related features of 10,000 songs. The

lyrics were extracted for the songs present in the dataset from different popular

lyrics websites. To aid the process, we have also used the dataset provided by

MusixMatch, which contains the important words present in a song along with the

number of occurrences of each of them.

1.3 Organization of the report

The report is organized as follows. Chapter 2 discusses about a few existing

systems for identifying the emotion of songs. The first system uses audio-related

features and the second uses lyrics for the classification. This chapter also

presents the novel approach taken by us against the background of the existing

systems that are mentioned. Chapter 3 contains a detailed design of the systems.

We have explained about the features and the methods we have used for the

classification. Chapter 4 explicates the implementation of the system and presents

the results obtained.



CHAPTER 2

LITERATURE SURVEY

Systems for identifying the emotion of songs have been implemented that help

users in finding songs based on their emotions. Most of the systems perform the

analysis by using audio-related features like tempo, pitch, mode, etc. while some

of them perform the classification based on the lyrical content and the meaning of

the songs. There are very few systems that incorporate both. Some of the existing

systems are given below.

2.1 Audio-related features

Jose Padiel and Ashish Goel, in their project report [4], have developed a music

mood classifier that classifies the songs as happy or sad. They have used only

the audio-related features for classification and their final dataset comprised 223

songs (137 sad and 86 happy). The audio-related features used by them are energy,

tempo, key, mode and harmony. They have used SVM for the classification. SVMs

are supervised learning models with associated learning algorithms that analyze

data and recognize patterns that can be used for classification purposes. Given

a set of training examples, each labelled as belonging to one of two categories

(supervised), an SVM training algorithm builds a model that assigns new examples

into one category or the other.

3
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2.2 Lyrics

Dang Trung Thanh and Kiyoaki Shirai [5], have developed a system that classifies

songs based on lyrics. They use the following three methods for classification.

1. SVM classifier

2. Naive Bayes classifier

3. Graph based method

2.2.1 SVM classifier

The SVM classifier uses the following three features for the analysis of the song.

• Word features

• Word sentiment features

• Artist feature

Word features: All words in the lyrics play a role and hence each word in the

lyrics is considered a feature for classification.

Word sentiment feature: There are certain words that reflect the emotion of the

song directly. These words are called sentiment words. They determine the

emotional polarity of the song. They can either be strengthened or weakened by

adding words like “very much” or “don’t” respectively. These are called the

modifier words. For example, “I love you” implies a positive meaning whereas “I

don’t love you” implies a negation. On the other hand, “I love you very much”

implies a stronger positive meaning. This implies the three types, namely
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1. SW (Sentiment word)

2. NEG-SW (Sentiment word with negation)

3. MOD-SW (Sentiment word with modifier)

Artist feature: Certain artists tend to make songs of a particular genre more so

than others. This information aids in the classification. For example, the band

Coldplay mostly makes sad, slow and meaningful songs whereas an artist called

Blake Shelton makes happy country songs.

2.2.2 Naive Bayes classifier

Basic Model: A Naive Bayes classifier is a probabilistic classifier based on

applying Bayes’ theorem with strong independent assumptions. It assumes that

the presence or absence of a particular feature is unrelated to the presence or

absence of any other feature. For example, the lyrics of a song contains the title,

introduction, verse and chorus. According to Naive Bayes classifier, each of these

features contributes independently to the classification regardless of the presence

or absence of the other features.

Significance of chorus and title: The lyrics of each song is divided into several

parts as

1. Title

2. Introduction

3. Verse

4. Chorus



6

Among these, the title and chorus play an important role in providing information

about the emotion of the song. The title in general depicts the main theme. The

chorus repeats at least twice with slight variations. This again reflects the theme

of the song. Hence, the classifier adds more weight to the words from the title and

chorus portions of the song.

2.2.3 Graph based methods

A graph consists of nodes and edges. Each node signifies a data item under analysis

and an edge between the two data items (or nodes) describes the relation between

them. In our problem scenario, each song will be a node and the edge between two

songs (or nodes) will be the artist who produced both the songs. A graph of test

data is first built and the Naive Bayes model is used in classifying them.

2.3 Novel approach

We have incorporated a few variations in this project: we have included an extra

audio feature, loudness, and devised a new method to calculate the harmony

features. We have also devised a new approach to combine the audio and lyrics

feature spaces into a single feature space and perform classification based on it.



CHAPTER 3

DESIGN

The analysis of the song is performed with two sets of features, namely its audio-

related features and lyrics . We have used three approaches to identify the song’s

emotion. The first approach considers only the audio-related features, the second

uses only the lyrics, and the third combines both sets of features into a single

feature space.

3.1 Audio features module

The dataset contains the following audio-related features:

• Tempo (the speed of the song measured in beats per minute)

• Energy (obtained by integrating over the power spectral density)

• Mode (indicating if a song is played in major or minor mode)

• Key (identifying which of the 12 keys the song has been played in)

• Loudness (general loudness of the track)

• Harmony (the combination of simultaneously sounded musical notes to

produce a pleasing effect)

3.1.1 LIBSVM

LIBSVM is a library for Support Vector Machines (SVM). SVMs are supervised

learning models with associated learning algorithms that analyze data and
7
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Songs’ IDs
and labels

Feature
extraction

Audio
features
vectors

FIGURE 3.1: Audio Features Module 1

recognize patterns that can be used for classification purposes. Given a set of

training examples, each marked as belonging to one of two categories

(supervised), an SVM training algorithm builds a model that assigns new

examples into one category or the other. We have used the Java version of

LIBSVM. The feature extraction has been performed as shown in Figure 3.1. The

pipeline for the classification using LIBSVM is shown in Figure 3.2

Training
set (Audio

feature
vectors)

SVM
training Model

SVM
predict

Predicted
classes

of songs

Test set

FIGURE 3.2: Audio Features Module 2

The initial input consists of the songs’ labels and their track IDs, which is sent to

the feature extraction module. This module is a Python program that extracts the

required audio features of the songs from the Million Song Dataset and generates

the training set in the required format, as shown in Figure 3.3.

The next step is to partition the data into training and testing datasets for

cross-validation. Cross-validation is a model validation technique for assessing

how the results of a statistical analysis will generalize to an independent data set.
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FIGURE 3.3: LIBSVM Input Format

A common type of cross-validation is k-fold cross-validation where the original

dataset is randomly split into k equal sized subsets. Of the k subsets, one is chosen

to be the test set, and the remaining k− 1 subsets are used for training. The

process is then repeated k time (k fold), with each of the k subsets used exactly

once as the test set. The k results can be averaged to calculate the prediction.

We have performed 10-fold Cross-validation on the dataset. The various sets are

given as input to the SVM training module which generates a model file which,

along with the test sets, is given to the SVM predicting module that generates the

output file containing the predicted classes.

3.1.2 LIBLINEAR

LIBLINEAR implements linear SVM. Linear SVM can be used when the training

data are linearly separable, i.e., we can find two hyper planes such that they

separate the data and there are no points between them. In geometry, hyperplane

is a generalization of the two-dimensional plane into an arbitrary number of

dimensions. LIBLINEAR can be used for large datasets and is faster than
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LIBSVM. The training and test sets for LIBLINEAR are the same as the ones

used for LIBSVM.

3.1.3 WEKA toolkit

WEKA stands for Waikato Environment for Knowledge Analysis. It is a freely

available toolkit used for classification purposes. The input file has to be given

in a format known as arff, as shown in Figure 3.4. The name arff stands for

(Attribute Relation File Format). Once the input training and testing files are given,

WEKA automatically applies the chosen algorithm to provide the classification

results. We experimented with different algorithms and decided to work with the

algorithm Random Forests as it produced the best results.

FIGURE 3.4: WEKA Input Format

3.1.4 Random forests

”Random Forests” is an ensemble learning method (uses multiple learning

algorithms) for classification that operates by constructing a multitude of decision

trees at training time and producing as output the class that is the mode (most
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frequently occurring) of the classes output by individual trees. We have

implemented the same in Java.

3.2 Lyrics module

We then analysed the lyrics of the song using Naive Bayes classifier.

3.2.1 Naive Bayes classifier

The Naive Bayes module is shown in Figure 3.5

Song
name,
artist

name, ID

Lyrics
extraction
module

Lyrics
training set

Naive
Bayes

classifier
(training
module)

Trained
model

Test set

Output
(emotion)

FIGURE 3.5: Lyrics

Basic model: A Naive Bayes classifier is a probabilistic classifier based on

applying Bayes’ theorem with strong independent assumptions. The Naive Bayes

classifier assumes the presence or absence of a particular feature is unrelated to

the presence or absence of any other feature. For example, the lyrics of a song

contain title, introduction, verse and chorus. Naive Bayes classifier assumes that

each of these features contributes independently to classification of the song

based on its emotion regardless of the presence or absence of the other features.
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A Python program was written to extract lyrics of the song from two of the most

popular lyrics websites, namely www.azlyrics.com and www.metrolyrics.com

given the song’s name, artist and track ID. The lyrics were kept in two folders,

Happy and Sad, depending on its emotion.

Significance of the chorus and title: The lyrics of each song is divided into

several parts as

1. Title

2. Introduction

3. Verse

4. Chorus

Among these, the title and chorus play an important role in providing clue about

the emotion of the song. The title of the song in general depicts the main theme

of the song. The chorus repeats at least twice in the song with slight variation in

some characteristic words. This again reflects the theme of the song. Naive Bayes

classifier hence adds more weight to these words from the title and the chorus parts

of the song.

3.2.2 NLTK

NLTK stands for Natural Language Toolkit. It is a leading platform for building

Python programs to work with human language data. It provides easy-to-use

interfaces to over 50 corpora, along with a suite of text processing libraries for

classification, tokenization, stemming, tagging, parsing, and semantic reasoning.
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The implementation of Naive Bayes found in NLTK was used to classify the

songs based on the lyrics.

3.3 Using consensus from multi-layer graphs

Combining multiple features to perform unsupervised and supervised learning is

becoming an increasingly popular approach. We considered the problem of

emotion classification songs based on the audio features and their lyrical content.

The diverse information contained in the audio features and lyrics can enable the

design of more robust and effective classifiers. An approach to create a unified

representation for data samples described by multiple descriptors is to construct

individual graphs and generate a common representation using spectral

techniques (e.g. multi-layer graph clustering)[1]. We have adopted the

graph-based approach and developed a novel algorithm for classification. The

pipeline for the algorithm is shown in Figure 3.6

3.3.1 Feature extraction

• Audio features: The same audio features used in random forests were used

and appropriate normalization is performed.

• Lyrics: The bag of words model of the lyrics has been used. The

bag-of-words model is a simplifying representation used in natural

language processing and information retrieval. A document is represented

as the multi-set of its words, disregarding grammar and word order but

keeping multiplicity (number of occurrences of each word)
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FIGURE 3.6: Training

3.3.2 Multi-layer graph construction

In several scenarios, multiple features are required to describe relationships

between entities. For example, to identify songs belonging to the same emotion,

we need to use both the audio features and the lyrical content. In such cases, we

need to model the relationships for the different features independently, and

combine the information for higher level tasks such as classification. Graphs are

natural candidates for describing entity relationships. In our case, we have a

multi-layer graph where each layer contains the same set of nodes (songs) and the

edges in each layer are different, based on the feature set considered.
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The first step in the algorithm is to construct undirected, weighted and

unsupervised graphs for each layer. Though different graph construction

strategies can be employed, we have used a simple K-Nearest Neighbour

approach with suitable distance functions for the two modalities (audio features

and lyrics). We fix the number of neighbours, K, and for each node we find the K

nearest neighbours and create edges between them. The neighbours are found by

using L1 distance function (absolute difference between features) and L2 distance

function (Euclidean distance) between nodes. Since the graph is weighted, the

adjacency matrix for the graph, which is the matrix depicting the neighbours of

each node, contains the corresponding weights.

For layer 1, we construct the graph using the audio features. Given two features fi

and f j , we measure the edge weight using the formula

Wi j = exp(−γ‖ fi− f j‖2)

if the vertex v j is one of the K nearest neighbours of vi. We have used `2 distance

function to calculate this.

Computing embeddings

Let us consider a weighted and undirected graph G = {V,E}, where V is the set

of vertices and E is the set of edges. The adjacency matrix W of the graph is a

symmetric matrix whose entry Wi j represents the edge weight if there is an edge

between vertex vi and v j, or 0 otherwise. The degree of a vertex is defined as the

sum of the weights of all the edges incident to it in the graph, and the degree matrix

D is defined as the diagonal matrix containing the degrees of each vertex along its
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diagonal. The normalized graph Laplacian matrix L is then defined as

L = D−1/2(D−W)D−1/2. (3.1)

The Eigen values and Eigen vectors of the normalized Laplacian matrix can be

used to obtain a low-dimensional graph embedding, where nodes that have a high

edge weight are projected close to each other while the nodes with a small edge

weight are placed far from each other. The spectral clustering algorithm [2], groups

the vertices V into disjoint subsets by solving the following minimization problem

:

min
U

trace (UT LU) s.t. UT U = I, (3.2)

where the matrix U of size N×K (N vertices and K groups) is the embedding and

I is the identity matrix.

Now extending this to our case, we have two undirected graphs G1 = {V1,E1} and

G2 = {V2,E2}. Let us denote the corresponding Laplacians and Embeddings as L1,

L2 and U1, U2 respectively. Using an approach similar to [1], we infer a consensus

embedding U that is close to both U1 and U2. This resulting embedding captures

the relationships described by both the graphs.

3.3.3 Computing projection for novel test samples

For a test sample, described by both audio features and a lyric model, we need to

project it onto the embedding space estimated using the training data. We use an

approach based on sparse coding to achieve this. Sparse coding aims to represent

a data sample as a linear combination of pre-defined basis functions. Given a set



17

FIGURE 3.7: Testing

of basis functions stored in a dictionary D, we can sparsely code a data sample y

as

min
a

ρ1(y−Da)+λρ2(a) (3.3)

where ρ1 is the loss function that measures the distance between y and Da, ρ2 is the

sparsity regularizer on a, and λ is the regularization penalty that controls the trade-

off between loss and regularization. In our case, we use the training data samples

as the dictionary. Since we have two different modalities (audio and lyrics), we

propose to obtain a common representation using the two dictionaries as

min
a

ρ
(1)
1 (y−Xa)+ρ

(2)
1 (h−Ba)+λ ‖a‖1, (3.4)

This is not straightforward to solve Equation 3.4. We use the algorithm proposed



18

in [3] to obtain the representation a. Now, we compute the embedding for the test

sample as

utest = Ua. (3.5)

3.3.4 Classification

For the training data, we learn a 2−class linear SVM classifier using the

embeddings. Now, for a test sample we compute utest and predict the class using

the SVM classifier.



CHAPTER 4

IMPLEMENTATION

This chapter describes the implementation of the system. First, we have discuss

about features of songs. Then we explain the classification based on audio features,

and that using the lyrics of the songs. We implement the final classification using

multi-layer graphs.

4.1 Audio features extraction from songs

We have used the features of the songs available in the Million Song Dataset. The

following audio feature extraction tools were used to extract the audio features of

the songs given as input.

1. YAAFE (Yet Another Audio Feature Extraction): We experimented with

the YAAFE tool. But many of the required features mentioned were not

available for extraction.

2. MusicBrainz server: MusicBrainz is an open music encyclopedia that

collects music metadata. It has metadata available for all the songs in the

Million Song Dataset (MSD). A local musicbrainz server, 27 GB, in size

was downloaded and set up but connection to its database failed.

19
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4.2 Manual labelling of songs

Over 800 songs by familiar and unfamiliar artists from the dataset were manually

labelled. Each song was classified with the following labels in mind:

• Happy or Sad

• Fast or Slow

• Heavy or Light

The classified file looked as shown in Figure 4.1

FIGURE 4.1: Classified Songs

We have used only the emotion of the song (happy/sad) for classification. The

other labels can be used in the future. Some songs were found to be neither happy

nor sad and they had to be omitted. The final dataset comprised 500 songs.
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Key Name Key Number Frequency(Hz)
A0 1 27.500
A0# 2 29.135
B0 3 30.868
C1 4 32.703
C1# 5 34.648
D1 6 36.708
D1# 7 38.891
E1 8 41.203
F1 9 43.654
F1# 10 46.249
G1 11 48.999
G1# 12 51.913

TABLE 4.1: 12 Keys and Frequencies

4.3 Audio features used

The following audio features were used.

1. Key: It identifies which of the 12 keys (labelled as 1 to 12) the song has been

played in. The 12 keys and their corresponding frequencies are given below.

2. Mode: Mode defines the set of musical notes used in a song. There are

predominantly two types, minor and major.

3. Tempo: Tempo refers to the speed of the song (measured in beats per

minute).

4. Energy: Energy is the work done to produce a tone at a particular

frequency. The SegmentsTimbre table in the MSD consists of 12 columns

each representing a key. The song is split into 0.3 seconds long segments.

Each segment along with its 12 corresponding frequency values makes up a

row. For example, a song that is 6 minutes long (360 seconds) is divided
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into 1200 segments thus resulting in a 1200× 12 table for that song. The

sum of all values in the matrix is taken as the overall energy of the song.

5. Loudness: It refers to the general loudness of the track and is the perception

of amplitude.

6. Harmony: Musically speaking, most happy-sounding harmonies contain

the root note of the song (key) and the note that follows it after four

semitones, while most sad-sounding harmonies contain the root note and

the note that follows it after three semitones. A semitone is defined as the

smallest interval used in music, equal to half a tone; a half step.

We have taken this as the basis of our approach in calculating the harmony

features. The “SongsPitch” table in the MSD contains the

SongSegmentNumber along with the contribution of each one of the 12

notes in each segment. We take the number of the segments in which the

key, the third and the fourth semitones dominate the segment and store the

values. These will be used as the harmony features.

4.4 Analyzing the features and their combinations

All the features listed above are stored in the Million Song Dataset as HDF5 files.

HDF stands for Hierarchical Data Format. It is designed to store and organize large

amounts of numerical data. We wrote a small tool in Python that takes the song’s

name as input and extracts the required audio-related features from the dataset.

This program makes use of h5py, a Python package that provides an interface to

the HDF5 data format. The HDF5 file is shown in Figure 4.2 and Figure 4.3
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FIGURE 4.2: HDF Dataset, SegmentsTimbre Table

FIGURE 4.3: HDF Dataset, Songs Table

Each feature will contribute to predict the emotion of the song. Energy and tempo

were taken as the main features and combinations with other features (mode, key,

loudness and harmony) were tried out and the results of the analysis were noted.

Separate approaches were used for classification based on audio-related features
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and lyrics: Random Forests was chosen to classify the songs based on audio

features and the implementation of Naive Bayes found in NLTK (Natural

Language ToolKit) was used to classify based on lyrics.

4.5 Classification based on audio features

This section explains how the songs are classified using the audio features alone.

4.5.1 LIBSVM

The training set file was prepared in the appropriate format and given as input

to the SVMtrain Java program. This creates a model file. The model file, along

with the test set, is given as input to the SVMpredict program. The final output

file generated by SVMpredict contains the predicted classes of the test set. 10-fold

Cross-validation was performed and the prediction accuracy in each case was noted

(for an initial set of 110 songs), as given in Table 4.2. The cross-validation results,

along with the training set and test set, are given in Figure 4.4 and Figure 4.5

respectively. The output is shown in Figure 4.6

4.5.2 LIBLINEAR

Initially, when the dataset was small (110 songs), the results obtained from

LIBSVM were satisfactory. However, when the size of the dataset was increased

to 500 songs, the results were biased towards the major class in the training set

(’sad’). Hence we opted for LIBLINEAR.
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FIGURE 4.4: LIBSVM Training Set

FIGURE 4.5: LIBSVM Test Set

FIGURE 4.6: LIBSVM Output

LIBLINEAR implements linear SVM. It can be used for large datasets and is faster

than LIBSVM. The input training set and test set for LIBLINEAR is similar to that

of LIBSVM. The accuracy of classification obtained during cross-validation was

56%. The LIBLINEAR output is shown in Figure 4.7
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Test set number Accuracy (%)
1 50
2 70
3 50
4 50
5 60
6 60
7 50
8 50
9 50
10 50
11 90
Average 57.2

TABLE 4.2: Cross-validation results

FIGURE 4.7: LIBLINEAR output

4.5.3 WEKA toolkit

The input file for the WEKA toolkit was prepared in the required arff format.

Cross-validation sets were created using a Python program. This program takes as
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input the entire set of 500 songs and creates training and test sets to facilitate 10-

fold cross-validation (as shown in Figures 4.8, 4.9 and 4.10). Training and testing

was done using various classifiers in the toolkit and the results were noted. The

performance of Random forests was found to be the best amongst all. Hence, we

chose Random forests for classification based on audio features.

FIGURE 4.8: WEKA training set

FIGURE 4.9: WEKA test set
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FIGURE 4.10: Result of Random forest

4.5.4 Random forests

We have implemented Random forests and modified it to our specifications. The

coding was done in Java with NetBeans as the frontend. Several decision trees

were created using a combination of all audio features (energy, tempo, mode, key,

loudness and harmony). Each node in the tree represents a feature and has 2 child

nodes, one node to represent feature values greater than the corresponding feature’s

average value and one to represent feature values lesser than the average. The

average value was calculated based on the following formula:

avg = avgT −
| avgH − avgS | ∗ | countH − countS |

countT

where
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avg: weighted average value

avgT: average of all songs

avgH: average of happy songs

avgS: average of sad songs

countH:count of happy songs

countS: count of sad songs

countT: count of all songs

The trees are of different depths, depending on the number of features used in

creating them. Two sample trees are given in Figure 4.11 and Figure 4.12.

Figure 4.13 describes the random forests module.

Energy

Tempo

E

<avg

E

>avg

<avg

Tempo

E

<avg

E

>avg

>avg

FIGURE 4.11: Random Forest - Decision Tree 1
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FIGURE 4.12: Random Forest - Decision Tree 2

avg: weighted average

E: predicted emotion

Audio
features input
(training set)

Decision tree
construction

Final decision
based on
mode of
all trees

Predicted
class

Test set

FIGURE 4.13: Random Forests module

The training set, prepared in the appropriate format was then given as input to the

program which created decision trees based on it. Testing was done by comparing

the test data with all decisions trees and storing each tree’s prediction. Finally, the
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mode of all predictions were taken and compared with the actual emotion of the

song.

The results were noted, with and without including the new features, namely

loudness and harmony. When they were not included the average accuracy was

56.25% but when they were included the average accuracy came up to 61%, thus

justifying our decision to include those features. The results from random forests

are shown in Figures 4.14 and 4.15.

FIGURE 4.14: Output of Random Forest

A front-end was designed using NetBeans IDE and it allows the user to select a

dataset from the given 5 datasets and correspondingly choose the happy or sad

songs in them.
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FIGURE 4.15: Output of Random Forest

4.6 Classification based on lyrics

We wrote a small utility in Python to extract lyrics automatically from two popular

lyrics websites, which takes the song name and artist name as input. The program

formats the input accordingly for each website and extracts the lyrics. The websites

used are

1. AZlyrics.com: The appropriate format

www.azlyrics.com/ArtistName/SongName.html

2. Metrolyrics.com: The appropriate format

www.metrolyrics.com/SongName-lyrics-ArtistName.html

The extracted lyrics were all stored in two separate folders, one for happy songs

and the other for sad. This comprises the dataset for lyrics. A sample lyrics file is

shown in Figure 4.16.
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FIGURE 4.16: Song lyrics

4.6.1 Word list

A 6800 strong word list containing two sets of words viz positive words and

negative words were used. Each song was classified by counting the number of

times a word from each of these list appears in its lyrics. The emotion was

predicted by a numerical comparison of the positive and negative counts. A

prediction accuracy of 58% was obtained. This is acceptable since the word list is

not exhaustive and can be improved.

4.6.2 Bag of words

The dataset provided by musiXMatch was used. It contains a set of the most

frequently occurring words along with their frequencies for 2 lakh songs present

in the million song dataset. A Python program was written to extract the bag of

words for the 500 songs in our dataset. The bag of words representation of the
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lyrics is as shown in Figure 4.17. LIBLINEAR was used to classify the same. A

prediction accuracy of 53% was obtained.

FIGURE 4.17: Bag of Words

4.6.3 Naive Bayes classifier

An existing implementation of Naive Bayes classifier in Java was initially used to

classify lyrics. Separate lyric sets are used for training and testing. The output is

predicted either as positive, representing happy, or as negative, representing sad.

The classification results are shown in Figure 4.18

FIGURE 4.18: Output of Naive Bayes classifier
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4.6.4 NLTK

NLTK stands for Natural Language Toolkit. It is a suite of libraries and programs

for Natural Language Processing (NLP) for Python programming language. The

implementation of Naive Bayes found in NLTK was used to classify the songs

based on lyrics. The results obtained were accurate up to a maximum of 75% in

certain cases (as shown in Figures 4.19 and 4.20).

FIGURE 4.19: Output from the Naive Bayes classifier of NLTK for a training set
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FIGURE 4.20: Output from the Naive Bayes classifier of NLTK for a different training set

4.7 Using consensus from multi-layer graphs

All the modules have been implemented in Python. The audio features and bag of

words are stored in separate matrices. These are given as input to the main driver

module. KNN graphs are constructed for both audio features and bag of words.

The compute embedding module creates an embedding which is a combined

representation of both the graphs. This represents the training data. The sparse

code module creates a sparse representation of the test data and returns training

samples closest to it. This makes up the test data.

The training data and test data are given as input to SVMTrain and SVMPredict

which outputs the prediction accuracy as shown in Figure 4.21.



37

FIGURE 4.21: Multi Layer Graph



CHAPTER 5

CONCLUSION AND FUTURE WORK

We implemented a system to identify the emotion of the songs and discussed the

detailed design and implementations of the algorithms used in the report.

The classification based on audio-related features was initially done using

LIBSVM. It worked quite decently for small datasets. However, on increasing the

size of the dataset, the prediction became biased towards the major class in the

training set. Similar problems were encountered while using LIBLINEAR. We

then experimented with different classifiers from the WEKA toolkit. Random

forests produced the best results. We implemented the same in Java, modifying it

according to our specifications and used it to classify the songs.

For classification based on lyrics, the word list approach and the bag of words

approach were tried individually. The results were not satisfactory. Finally, we

zeroed in on the Naive Bayes classifier. The implementation of Naive Bayes in

NLTK was used for the classification based on lyrics.

For classification based on a combination of the feature spaces, multi-layer graphs

was used. The results obtained from testing on smaller datasets look promising. It

can be tested on bigger datasets in the future.
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